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EFFECTIVE THANSVERSE CONDUCTIVITY OF 

MATERIALS WITH THROUGH CRACKS IN THE 

R.  L.  Salganik  

LAYERED 

LAYERS 

UDC 536.21:620.191.33 

The p rob lem of the t r a n s v e r s e  conductivity of a mul t i layered  packet  when loaded in the same 
plane as the l aye r s ,  which a re  mechanica l ly  independent, in the p resence  of or  on the g e n e r a -  
tion of a number  of through c r acks  in the l ayers  under load is analyzed.  

1. Fo r  the sake of brevi ty  we s h a h  r e f e r  in this and the subsequent  sec t ions  to t he rma l  conductivity,  
but diffusion taking into account the influence of changes in concentra t ion on changes in volume can be t reated 
analogously.  

1.1. Let us cons ider  a packet  of l aye r s ,  pa ra l l e l  with the xy plane, containing a number  of through c racks  
(see Fig. 1). The conductivity of unloaded l aye r s  with c racks  will be t rea ted  as negligible compared  with the 
conductivity of the medium in the exposed c racks  and of the medium between the layers ;  the mean res i s t ance  
of the medium between the l ayers  will be neglected.  The loading of the l ayers  is de termined by the conditions at  
the per iphery  of the packet.  When the c r acks  a re  exposed by the action of extension,  the layer  acquires  a finite 
effect ive conductivity and under ce r ta in  conditions leakage may occur  through the packet ,  i .e. ,  it loses its in-: 
sulating p rope r t i e s .  A s i m i l a r  si tuation a r i s e s  in many cases  of p rac t i ca l  importance .  The p rob lem of the 
loss of insulating p rope r t i e s  in a mul t i layered  packet  is examined theore t ica l ly  below. 

The effect ive conductivity of the packet  perpendicu la r  to the l ayers  at a ce r t a in  point z under the condi-  
t ions indicated is equal to 

)~ = ~, ~ S  (~. (1) 
Q 

Here  S (el) is the area  of the exposed a c r a c k  (a jump in the no rma l  component  of d i sp lacement  integrated along 
the length of the crack)  and h' is the coefficient  of t he rma l  conductivity of the medium in the c racks .  Assuming 
that the l ayers  with c racks  are  under plane s t r e s s ed  state conditions, we have (for der ivat ion see [1, 2]) 

1 ' ~  (n,S(~) 4- nhS[a)). (2) 
r 

Here  elk is the effective s t ra in  tensor  of the l ayer ,  ~ k  is the mean s t ra in  t ensor  of the ma t e r i a l  outside the 
c r a c k  (the s t ra ins  a re  assumed to be slight), n i is the vec tor  of the unit line normal  to the c r a c k  (the c racks  
a re  assumed  to be rec t i l inear ) ,  and S: (a) is the f -component  of the d i sp lacement  jump integrated along the 
length of the c rack .  Since n is [a)  = S(~) ( recur ren t  index summing) ,  it follows f rom (1) and (2) that 

2. -: ,V (~i~- e o). (3) 
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z 
Fig. 1. Diagram of packet of layers.  Dots 
indicate the medium in c racks  and between 
layers  which is much more  conducting than 
the mater ia l  of which the layers  a re  made. 
Flow paral le l  with z axis. Layers  do not 
interact  mechanically.  The packet is loaded 
in xy plane. 

F o r  this express ion to be applicable the temperature  equalization must  proceed much more  rapidly between the 
layers  than a c r o s s  the packet and for  these purposes the c r ack  exposure must  not be too great .  On the other 
hand, the c r a c k  exposure should not be too smal l  e i ther ,  since it is considered possible to neglect the con-  
ductivity of the unloaded layers .  Under conditions in which the thermal  proper t ies  of the medium in the c racks  
and between the layers ,  as well as the thicknesses  h of the layers  and the spaces between the layers ,  are  of the 
same o rde r  of magnitude, which a r e  easily satisfied, the corresponding evaluations take the form 

)~'--~ ~ e n - -  e~ h2 (4) 
)}, -- L ~ ' 

where Xm is the coefficient  of thermal  conductivity of the layer  mater ia l  and L is the mean distance between 
c racks .  It is c l ea r  f rom this that the c r ack  density should not be too small.  

According to (3), the effective t r ansver se  conductivity )t is expressed by the product of a large magnitude 
7t' multiplied by a smal l  magnitude eli - e~i and may therefore  vary over a wide range of values. It should be 
noted that in addition to c racks ,  the above also re fe r s  to c rack- l ike  format ions with a finite mechanical  r e s i s -  
tance under conditions in which the conductivity is fair ly high. 

1.2. The s t ra ins  in (3) are related to the tensor  of s t r e s se s  aik and the mechanical  charac te r i s t i c s  of the 
mater ia l .  Fo r  isotropic layers  with an isotropic c r ack  distr ibution the relat ions of thermoelas t ic i ty  [3] take the 
form 

~o. = E~-I (% _ Vo%) + sO, e~ = E -1 (a~ - -  v%) § sO (5) 

(and analogously for e~ and ey). Here crx and cry are  the mean s t r e s s e s ,  E 0 and v o are  Young's  modulus and 
:Poisson's  coefficient for  the l aye r  mater ia l ,  E and v are  the corresponding effective cha rac te r i s t i c s ,  0 is the 
tempera ture  deviation, and ~ is the coefficient of l inear expansion, which obviously is the same in both cases .  

If the sys tem of c racks  is not isotropic,  the second cor re la t ion  in (5) var ies .  Thus, for c racks  paral lel  

with the x axis we have 
= , ' (% - -  v,~.O + sO, ~ = ~ Eoi (~.~ - -  ~ 0%) - c:O, % = E .  i (6) 

in which v0E0 "t = v,E~ 1. 

1.3. If the c racks  are  not drawn too close together,  so that interaction between them is not significant, 
E and u and E .  and v. can be found f rom the solution for  one c rack  in an infinite body (the low-concentrat ion 
approximation). These cha rac te r i s t i c s  can also be found f rom the solution to this equation when the interaction 
is significant if the distr ibution of c racks  by size is fairly broad and / o r  if the c racks  are  distributed through 
space fair ly evenly and uniformly. These questions and the resul ts  of an experimental  test a re  examined in 
[1, 2]. The corresponding formulas  (the same regard less  of whether there is a broad or narrow distribution by 
size but with a fair ly random c rack  distr ibution through space) for  an isotropic mater ia l  take the form 

E = E o exp (-=~Q/4), vE -1 = v0Eol (7) 

in the case  of an isotropic c rack  distribution [1], and 

E, = 9E o [(3n9../16 + 2) 2 -  i] -2, v . E .  1 = voEol (8) 

in the case of c racks  paral le l  with the x axis. Here ~2 = ENjI 2 = N~ 2 with Nj being the number of c racks  of length 
lj per  unit a rea  and N = ENj (formulas (8) are  obtained as inculcated in [1] using the solution for  a c r ack  in an 
anisotropic plate [4, 5]). By combining (5) and (7) or (6) and (8) it is possible to obtain an express ion for k in 
t e rms  of s t r e s s e s ,  t empera ture ,  and c rack  charac te r i s t i c s .  

1.4. The s t ressed  state influencing ?~ may be created both by the application of mechanical  loads and by 
changes in tempera ture .  Fo r  example,  X is negligibly smal l  for  a packet secured along a c i r cu la r  periphery 
with an isotropic cracked state when heated (0 > 0) and it can be varied considerably when the packet is cooled 
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a s  a r e s u l t  of b i a x i a l  e x t e n s i o n .  By m a k i n g  use of (5), (7), and (3) and a s s u m i n g  tha t  ex = ay = 0, we find 

)~ =--~. 'r~ (~Q) aOH (0), q~ (9.) = 2 1 - -  exp (--,x.o./4) , 
1--% exp (--~9./4) 

(9) 

w h e r e  H(0) = 0 when 0 < 0 and H(0) = 1 when 0 > 0. A n a l o g o u s l y ,  f o r  a p a c k e t  wi th  a d i s t r i b u t i o n  of c r a c k s  
p a r a l l e l  wi th  the x ax i s  and s e c u r e d  a long the e d g e s  p a r a l l e l  wi th  the c r a c k s  (ey = 0) and f r e e  of s t r e s s e s  in 
the d i r e c t i o n  a long  the c r a c k s  (ax = 0), we find f r o m  (6), (8), and (3) tha t  

)~ = - - ) . 'q)  (g?) a 0 H  (0), q~ (.o) = 1 - -  9 [ ( a n t i / 1 6  + 2) 2 - -  l]  -2. (10)  

2. In the p r e v i o u s  s e c t i o n  the c h a r a c t e r i s t i c s  of the c r a c k e d  s t a t e  a r e  a s s u m e d  to be p r e d e t e r m i n e d .  
Let  us  h e r e  e x a m i n e  the q u e s t i o n  of the g r o w t h  of the c r a c k e d  s t a t e .  The  b a s i c  p r i n c i p l e s  wi l l  be va l id  to an 
equa l  e x t e n t  f o r  both  the p lane  and s p a t i a l  c a s e s .  

2.1. The  t e r m  ngrowth of c r a c k e d  s t a t e "  i s  t aken  to m e a n  two p r o c e s s e s :  the p r o c e s s  of c r a c k  in i t i a t i on  
and the p r o c e s s  of c r a c k  g rowth .  T h i s  d i v i s i o n  is  to a c e r t a i n  e x t e n t  a r b i t r a r y .  I f  the t e r m  c r a c k  is  t aken  to 
m e a n ,  a s  i s  u sua l ,  the f r a c t u r e  s u r f a c e  of d i s p l a c e m e n t s  in an  e l a s t i c  body such tha t  the a c t u a l  f a i l u r e  which  
c a u s e s  the c r a c k  g rowth  and,  p o s s i b l y ,  the i n e l a s t i c  s t r a i n  e f f e c t s  p r e c e d i n g  f a i l u r e  a r e  c o n c e n t r a t e d  in s m a l l  
r e g i o n s  at  the ends  of the c r a c k  (end r e g i o n s ) ,  then the f i r s t  of the two p r o c e s s e s  is  c h a r a c t e r i z e d  by a change  
in the d e n s i t y  N 0 of c r a c k s  of the m i n i m u m  length  c o n s i s t e n t  wi th  such  a concep t  and the second  is  c h a r a c t e r -  
ized  by a change  in Nj (j > 0) a s  a r e s u l t  of i n c r e a s i n g  the lengths  Ij.  

C r a c k s  of length  10, g e n e r a t e d  in the t ime  i n t e r v a l  f r o m  t '  to t '  + d t '  in q u a n t i t i e s  of }q0(t')dt' (per  unit  
a r e a ) ,  a ch i eve  lengths  o f / ( t ,  t ' )  a t  a c e r t a i n  m o m e n t  t. T h e r e f o r e ,  fo r  ~2 [ e x a m p l e s  (9) and (10)] we have 

t 

.o.. (t) = j go (t') l~ (t, r )  dr'. (11) 
0 

The  N O and ! func t ions  a r e ,  in p r i n c i p l e ,  known if the law g o v e r n i n g  the a c c u m u l a t i o n  of c r a c k s  of length l 0 and 
the law g o v e r n i n g  the g r o w t h  of c r a c k s  a r e  known. C r a c k s  a c c u m u l a t e  if the r a t e  of the f i r s t  p r o c e s s  is  g r e a t e r  
than  that  of the s econd .  In p a r t i c u l a r ,  f o r  cond i t i ons  in which  a c r a c k  d e n s i t y  of N o = c o n s t ,  such  that  N O = 
N05(t - to), e m e r g e s  a s  soon as  a p r e d e t e r m i n e d  s t r e s s  % is r e a c h e d  at  a m o m e n t  to, i t  fo l lows  f r o m  (11) that  

(t) = No 12 (t, to) (12) 

(if c r a c k s  e x i s t  f r o m  the v e r y  beg inn ing  i t  should be a s s u m e d  h e r e  tha t  t o = 0). In g e n e r a l ,  if a t  a m o m e n t  t o a 
c r a c k  d i s t r i b u t i o n  by lengths  wi th  a d e n s i t y  n(l) e x i s t s  o r  is  g e n e r a t e d  and if t h e r e a f t e r  only those  c r a c k s  g row 
wi thou t  any new c r a c k s  e m e r g i n g ,  then  

.o_ (t) = j" n q ' )  t~ (t, to, r )d t ' ,  0-3) 

w h e r e  in add i t i on  to t0, I '  is  now a l s o  an a r g u m e n t  of l 2. Unde r  to t a l ly  g e n e r a l  cond i t ions  I in (12) and (13) can  
be  found in a q u a s i s t a t i o n a r y  a p p r o x i m a t i o n  in which  the i n s t a n t a n e o u s  ve loc i t y  of the end of the c r a c k  is  d e -  
penden t  only on the c o e f f i c i e n t  of i n t ens i ty  of the s t r e s s e s  Ne at  a g iven  c r a c k  end at  the s a m e  m o m e n t  in t ime  
(see [6]). Th i s  a p p r o x i m a t i o n  t a k e s  a p a r t i c u l a r l y  s i m p l e  f o r m  when the l o w - c o n c e n t r a t i o n  a p p r o x i m a t i o n  is 
a l s o  va l id  at  the s a m e  t i m e .  E x p e r i m e n t  shows tha t  th is  r e m a i n s  s a t i s f a c t o r y  up to ~2 -~ 0.3 [2]. In the low-  
c o n c e n t r a t i o n  a p p r o x i m a t i o n  12 should be t r e a t e d  as  s m a l l  and only those  t e r m s  which  a r e  l i n e a r  in t e r m s  of ~2 
should be r e t a i n e d .  Then  in (9) ~ = ~ 2 / 2 ( 1  - ~'0), in (10) q~ = ~ / 2 ,  and the equa t ion  fo r  l t akes  the f o r m  

dl 
- -  f (Ne, 0). ( 1 4 )  

dt 

H e r e  f i s  the m a t e r i a l  funct ion  and Ne : 1/2cry=l, w h e r e  cr is  the s t r e s s .  F o r  e x a m p l e  (9) and (10) cl = - E ' c ~ 0 ( 1 -  
el2) whi l e  in (9) E ,  = E0 / (1  - 'J0), e = 7r/4(1 - '~0) and in (10) E ,  = E0, c = v / 2 .  By i n s e r t i n g  a l l  th is  into (14) 
we obta in  an equa t ion  fo r  f inding  l ( t ,  t ' ,  l ' ) .  As  a r e s u l t  and tak ing  into accoun t  (13), (9), and (10), X is e x -  
p r e s s e d  as  a func t iona l  f r o m  0. 

2.2. Let  us now a s s u m e  that  m a c r o s c o p i c  s t r u c t u r a l  c o m p o n e n t s  ( inc lus ions ,  g r a i n s ,  e t c . )  a r e  p r e s e n t  
in the m a t e r i a l  and le t  us a l s o  e x a m i n e  m a c r o s c o p i c  c r a c k s  of s u b s t r u c t u r a l  s i ze .  Such c r a c k s  can  a c c u m u l a t e  
a s  a r e s u l t  of s topp ing  at  i n c l u s i o n s  and they may  a c c u m u l a t e  at  the g r a i n  b o u n d a r i e s  o r  a t  the m a t r i x - i n c l u s i o n  
i n t e r f a c e s .  I f  the p r o c e s s  of c r a c k  i n i t i a t i on  and p r o p a g a t i o n  to a s i z e  l , ,  g o v e r n e d  by the m e a n  d i s t a n c e  b e -  
tween  i n c l u s i o n s  o r  by g r a i n  s i z e ,  is  g r a d u a l  in t i m e ,  then the  e x a m i n a t i o n  can  be c a r r i e d  out a s  e n v i s a g e d  in 
[1]. If  the t i m e  e f f ec t s  a r e  not s i g n i f i c a n t ,  e n e r g e t i c  p r i n c i p l e s  ana logous  to G r i f f i t h s '  [8] can  be used and in 
th i s  c a s e  i t  is  a s s u m e d  tha t  the s a m e  e n e r g y  [ is  c o n s u m e d  in the g rowth  of e ach  c r a c k  in a l a y e r  of unit 
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th ickness .  T h e n  an ene rgy  of N~ = 2N? / ,  is consumed  in the g rowth  of N c r a c k s ,  where  y has  the sense  of the 
a v e r a g e d  spec i f ic  fa i lure  ene rgy .  T h e s e  consumpt ions  should be compensa t ed  by a change  in the dens i ty  of the 
s t r a i n  ene rgy .  F o r  example ,  in the c a s e s  of loading examined  above W = E (a~ 2) / (1  - v) fo r  (9) and W = E .  x 
(~0)2/2 fo r  (10). C r a c k  a c c um ul a t i on  p r o c e e d s  until  

,:i) = tv (.o.) + 21vvl., ~ = Nt .  ; (15) 

it fa i ls  with the g rowth  of N. Art equ i l i b r ium value of N m under  the g iven  condi t ions  c o r r e s p o n d s  to a m i n i m u m  

F o r  example  (9) [example (10) is ana lyzed  ana logous ly]  the condi t ion  fo r  a m i n i m u m  (~ takes  the f o r m  

= q; ~ = exp ( - -  a.q/4), ~l = 8~, 
(1  - -  Vo~) 2" a (~x0)2EoI, " (16) 

The  m i n i m u m  when N = Nm ex i s t s  if 

1 
~] < ( o - -  v ) = ~o m~H 0 < 0 o = - -  I1 8?a&_E,,l, (1 - -  Vo) 2 (17) 

2vo~ § 1--  l'" 4v,,q § l 
Nm __ 4_~nl. ln2,,,;~ ~,,,-- 2voq (18) 

T h e n  

Tak ing  into accoun t  (15) and (17), we now have ins tead of (9) 

k =--2Uq.0 V-4v,)---i + 1 - -  1 - -  2v 0 (1 - -  v0) q_ H (q,, - -q) .  
v o (I /4v0q§ 1 - -  1) 

0-9) 

Such a ca lcu la t ion  is valid if there  is no  b a r r i e r  fo r  c r a c k  init iat ion.  If  t he re  is a b a r r i e r ,  the t r ans i t i on  
f r o m N  = 0 t o N = N m ( 0 )  o c c u r s w h e n 0 <  O r < 00 < 0 s o t h a t i n  (19) T 0 s h o u l d b e  r ep l aced  by ~?' < 7. H e r e 0  v 
c o r r e s p o n d s  to the s t r e s s  o b at  which the b a r r i e r s  a re  r e m o v e d  (the in t roduct ion  of a th resho ld  cr 0 a s s u m e s  
a c l e a r l y  defined re l a t ionsh ip  be tween the ini t ia t ion b a r r i e r s  and the s t r e s s ) .  The Nm value is r e s t r i c t e d  f r o m  
above e i t he r  by the condi t ion fo r  exhaus t ing  the poss ib i l i t i e s  of c r a c k  ini t iat ion or  by the condi t ion f o r  ma t r i x  
fa i lu re  a f t e r  which  c r a c k  g rowth  and then c r a c k  c o a l e s c e n c e  begin.  

3. Let  us examine  the inf luence of the c r a c k e d  s ta te  on the t r a n s f e r  p r o c e s s e s .  

3.1. The  equat ion  f o r  0 neglec t ing  the influence of the s t r e s s e d  s ta te  on the l ibe ra t ion  (absorpt ion)  of heat  
o r  of the d i f fus ing  subs tance  takes  the f o r m  

a_0 _ a oo . (20) 
Ot Oz \ Oz ) 

H e r e  ~c is the p roduc t  of the dens i ty  mul t ip l ied  by the t h e r m a l  capac i ty  ave raged  fo r  a fa i r ly  large  n u m b e r  of  
l a y e r s  [~c = (Pc)lfl + (pc)~(1 - /3)]  (where the indices  1 and 2 denote  ave rag ing  by l aye r s  and by the i n t e r l a y e r  
m e d i u m ,  r e s p e c t i v e l y ,  and /3 is the por t ion  of the th ickness  of the packet  taken up by the l ayers )  and X is the 
funct ion or  funct ional  f r o m  0 and may  a l so  be dependent  on the s t r e s s e s  applied which a r e  not re la ted  to 0. In 
the case  of diffusion ~c = 1, X has the sense  of the ef fec t ive  coef f ic ien t  of d i f fus ion,  0 is the change in c o n c e n -  
t r a t ion ,  and a is the coef f i c i en t  of sh r inkage .  The  p r o c e s s e s  of t h e r m a l  conduct iv i ty  and dif fus ion can p roceed  
toge the r  inf luencing each o ther  through the c r a c k e d  state .  Such wil l ,  fo r  example ,  be the case  when the c o e f -  
f ic ient  of d i f fus ion is d e t e r m i n e d  by the c r a c k e d  s ta te ,  cont ro l led  by the change in t e m p e r a t u r e ,  and when the 
sh r inkage  coef f ic ien t ,  r e la ted  to the change in concen t r a t i on ,  and the influence of the c r acked  s ta te  on the 
t h e r m a l  c h a r a c t e r i s t i c s  a r e  negl igibly low. In this  ca se  we have a s y s t e m  of two equat ions  in the f o r m  of (20) 
f o r  0c and 0 T with the coef f ic ien t  )~ in the f i r s t  being dependent  on z and t and in the second being constant .  

3.2. When the c r a c k e d  state  is fixed o r  changes  fa i r ly  s lowly the flow q through the packe t  can  be found, 
neglect ing the t ime de r iva t ive  in (20). Taking  into accoun t  that  q = - x a o / a z  in c a s e s  (9) and (10) when 0 < 0 
we find 

/-/ 

--1-Kc'- [02 (0, O--0~(  H, t)l dz -~ (21) 
q = 2 ~ (n (z, 0) ' 

0 

w h e r e  H is the th ickness  of the packet  with fl dependent  on z and t. Equat ion  (21) can  be used to find the leakage 
though the packe t  if the va lues  fo r  0 on both s ides  of it a r e  known. In the g e n e r a l  c a s e  (21) is a boundary  
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condition at that point of the boundary occupied by the cracked packet in the corresponding boundary-value 
problem. Given p rocesses  of diffusion and tempera ture  change related through the cracked state, if the the r -  
mal conductivity is assumed to be so great  that in the case examined above 0T can be treated as constant 
through the thickness of the packet,  formula (21) is obtained for the flow of the diffusing substance by r e -  
placing 1/2a[02(0,  t ) -  ~2(H, t)] by a0T[0c(0, t) - 0c(H, t)] in it. 

3.3. The t ime f rom the moment  at which leakage through the packet begins can be determined from non- 
stat ionary solutions to Eq. (20) or to a corresponding system. Let, for  example, drying occur  accompanied by 
shrinkage in a fixed cracked state not dependent on z and with an instantaneous reduction in concentrat ion to a 
value of -0c  at the moment t = 0 at the boundary of the packet af ter  which the value remains  constant. It can 
then be considered that the loading conditions correspond to examples (9) and (10). Due to the nonlinearity of 
the problem the rate ~, of propagation of the concentrat ion reduction wave is finite (for an analysis of this kind 
of problem and the solution see [9]). In the given case  [9] (IV.1.40) 

v = 0.81 1 ~;)J~0c ~-~, f, = 0.38H 2 [)Ja0cq)(.o.)]-~, (22) 

where t ,  is the time taken for  the front to pass through a packet of thickness H. 

F o r  an initially undamaged packet the condition for  the generation of a cracked state should be taken into 
account. Fo r  the mechanism examined in See. 2.2 and a load corresponding to example (9), we have an equa- 
tion of type (20) in which ~ is governed by formula (19). It should be noted that 7 can be heavily dependent on 0. 
The generation of a cracked state and with it of a 0 reduction wave occurs  only when 0 falls at the boundary of 
the packet below a value 00 governed by Eq. 0-7) (or the corresponding value 0' if there is a c rack  initiation 
bar r ie r ) .  A z-dependent cracked state is generated when the concentrat ion reduction wave passes ,  in which 
the form of the relationship a(z) (found f rom the formulas  in See. 2.2) and the depth to which the cracked state 
penetrates  are  governed by the nature and duration of the fall in 0 at the packet boundary. When the effect is 
repeated the propagation of the 0 reduction wave in the region of the incipient cracked state proceeds as de-  
scribed above. The cracked state front advances further  (if it has not passed right through the thickness of the 
packet in the f i rs t  instance) only when 0 is reduced sufficiently at the site where the front had stopped p re -  
viously. 

The examples considered show how (if the mechanical  cha rac te r i s t i c s  of the layers,  including the r e -  
sistance to c rack  generation and c r ack  growth which determine them, are known and if the conductivity of the 
medium in the c racks  and between the layers ,  which must  great ly exceed the conductivity- of the layers ,  is atso 
known) it is possible in the presence of various different forms of external  influences to establish the feasibility 
and nature of the loss by a packet of layers  of its insulating proper t ies ,  as well as to establish leakage through 
the disrupted packet and the time it will take to happen and during which it will remain  significant. 

N O T A T I O N  

k', Xm, ~, conductivity of medium in cracks, unloaded layers, and packet (transverse, effective), re-  
spectively; s(a), area of exposed crack; qk, tensor of effective infinitely small strains (i = x, y; k = x, y); 
e~k' averaged tensor of elastic infinitely small strains between cracks; ni, vector of unit line normal to crack 
line; S~, components of displacement jump on crack, integrated along length of crack; h, thickness of layer (it 
is assumed that the distance between the layers is of the same order of magnitude); L, mean distance between 
cracks; ~ik, stress tensor; 0, temperature (concentration) difference; a, coefficient of linear temperature 
(concentrational) expansion; E0, v0, Young's modulus and Poisson's coefficient for layer material; E, v the same, 
for effective characteristics in isotropic case; E., v., the same, for effective characteristics when cracks are 
parallel; Nj, N, N m, numbers of cracks per unit area; lj, I, l., lengths of crack; ~, dimensionless crack concen- 
tration; H (s) function of a single crack; f ,  material function governing crack-propagation resistance; Nr coef- 
ficient of stress intensity; % mean specific failure energy; W, strain energy density; oc, averaged product of 
density multiplied by thermal capacity; (pe)i,the same, for layers; (oe)2 , the same, for medium between layers; 
/3, part of packet thickness occupied by layers; 0c, 0T, concentration and temperature difference, respectively; 
H packet thickness; q, flow (of heat or substance) through packet. 
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THERMAL RESISTANCE OF A SYSTEM OF PARALLELEPIPEDS 

G. N. Dul'nev and I~. I. Ermolina UDC 536.248.1 

A method is proposed for caiculatlng the thermal  res is tance  of a sys tem of parailelepipeds with 
a local source  Which is encountered in the analysis  of the thermal  conditions in hybrid integral 
microc i rcu i t s .  

Many applied problems,  par t icular ly  problems associated with the analysis of therma [ conditions in mi-  
e roe lec t ronic  devices ,  reduce to a thermal  model which is a ~pyramid ~ of n unlike parallelepipeds of different 
sizes (Fig. la). In the actual construct ion,  the parallelepipeds forming the pyramid are the backing, "chips,,, 
adhesive layer,  switching plate, base,  etc. [1]. There  are rectangular ,  flat energy sources  on the upper s u r -  
face of the f i rs t  parallelepiped. Thermal  contact between adjacent surfaces  is assumed ideal. Heat dissipation 
f rom the lower surface of the n-th paraltetepiped obeys Newton's law and is charac ter ized  by a heat-exchange 
coefficient a;  there is no heat exchange at the lower surfaces .  

The exact mathemat ical  descr ipt ion of the tempera ture  field in such a system is ra ther  complex and 
hardly can be used for pract ical  purposes.  Calculation of the thermal  res is tance  from the source to the en-  
vironment  is usually based on the construct ion of an equivalent c i rcui t  represent ing a chain of s e r i e s - c o n -  
nected thermal  res i s tances  [1-4]. It is fur ther  assumed that the interfaces are  isothermal.  

We analyzed the possibility of such an approach for  the following problem: a bounded cyl inder  with a local 
energy source on one end and boundary conditions of the f i rs t  and third kind on the opposite end. The thermal  
res is tance  from the source to the environment was calculated in the two cases .  A compar ison of the resul ts  
showed that the values of the thermal  res is tance can differ by almost  a factor  of two for given values of the 
Blot number and given rat ios of cylinder and source sizes.  Therefore ,  determination of the thermal  res is tance 
of this sys tem must  be car r ied  out with considerat ion of hea t - t r ans fe r  conditions at the hea t - re leas ing  s u r -  
faces of each body. A method is proposed below for which sequential application provides an accuracy suffi-  
cient for pract ica l  purposes  without significant complication of the computational p rocess .  

M e t h o d  f o r  D e t e r m i n a t i o n  o f  T h e r m a l  R e s i s t a n c e  

We shall show that for this sys tem of bodies, the problem of determining the total thermal  res is tance 
f rom energy source to environment can be reduced to a problem of determining the thermal  res is tance of the 
f i rs t  parallelepiped, the hea t - t r ans fe r  conditions at the lower boundary of which are  charac ter ized  by an 
equivalent coefficient al  that includes the effect of all the other parallelepipeds (Fig. lc). 

To determine the value of oh, we consider  successively the temperature  field of each i-th paralieiepiped, 
for which the thermal  model can be represented in the following manner:  on the upper face of the para[lelepiped, 
there is a fiat energy source with an intensity p and area Si-1; on the lower surface,  heat t ransfer  is c h a r -  
acter ized by a hea t - t r ans fe r  coefficient c~ i, which takes into account the effect of all the remaining (n - i) 
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